
LA-UR-21-26058
Approved for public release; distribution is unlimited.

Title: Pagosa Performance on a HPE Apollo80 System

Author(s): Graziano, Vincent John
Nystrom, William David
Pritchard, Howard Porter Jr.
Smith, Brandon Michael
Gravelle, Brian Joseph

Intended for: random presentation

Issued: 2021-06-28

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Managed by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

Pagosa Performance on a HPE Apollo80 System

Vince Graziano
David Nystrom

Howard Pritchard
Brandon Smith
Brian Gravelle

LA-UR-YY-XXXXX

7/13/21

Presentation Outline

6/23/20Los Alamos National Laboratory

• Description of Pagosa and
Shaped Charge

• Running Pagosa on HPE
Apollo 80 A64FX node

• Performance limitations
• Role of Compilers
• Code refactoring to improve

performance
• Compare to other Processor

types
• Conclusions

2

Pagosa

Los Alamos National Laboratory

• 3 dimensional, multi-material shock wave physics code
• Uses a structured cartesian mesh
• Explicit finite difference method in the Eulerian frame used to solve

equations of motion, etc.
• Material equations-of-state (EOS) can be evaluated analytically or via

tabular lookup
• Written in Fortran (F2003), makes extensive use of array syntax and

Fortran intrinsics
• Parallelism – MPI only
• Uses OpenMP for GPU offload (not subject of this talk)

3

Running Pagosa on Apollo 80 A64FX node

Los Alamos National Laboratory

• One socket of A64FX with 48-cores with 4 numa nodes (CMGs)
• ARMv8.2-A+SVE SIMD width of 512-bits
• 32GBs of HBM2 memory (8 GB/CMG), no L3 cache, one L2 cache

per CMG

• Shaped Charge problem with 25-materials
• 1 mm resolution, 3D cartesian mesh
• Mixture of analytic and tabular equations-of-state
• Typical of actual user problems

• Compilers:
• CCE 10.0.2
• ARM 20.2.1
• GNU 10.2.0
• Fujitsu 4.5.0 (only recently obtained)

4

Performance Limitations

Los Alamos National Laboratory

• Coded largely in Fortran array-syntax
• Difficult for compilers to optimize well
• Each array-syntax statement implies operations and bandwidth

• Depending on mesh size, data is streaming to and from LLC or
memory

• In the case of A64FX, data will stream from HBM2

• A64FX stats for CCE built version (from CrayPat):
• 70.7% of instructions had backend stalls
• 24.1% of instructions were SIMD
• IRC of 0.56 (seen this for a variety of codes on A64FX)

5

Fortran Array-Syntax Patterns in Pagosa

Los Alamos National Laboratory 6

real, dimension(0:mx,0:my,0:mz):: a,b,c,d,e
a = b * c
d = a + e

do k = 0, mz
do j = 0, my

do i = 0, mx
a(i,j,k) = b(i,j,k) * c(i,j,k)

enddo
enddo

enddo
do k = 0, mz

do j = 0, my
do i = 0, mx ! reuse “a” from where?

d(i,j,k) = a(i,j,k) + e(i,j,k)
enddo

enddo
enddo

Semantically equivalent to

Fortran Array-Syntax Patterns in Pagosa

Los Alamos National Laboratory 7

do k = 0, mz
do j = 0, my

do i = 0, mx
a(i,j,k) = b(i,j,k) * c(i,j,k)
d(i,j,k) = a(i,j,k) + e(i,j,k)

enddo
enddo

enddo

- What should a compiler do to improve performance?

- If compiler fuses all 3-loops, “a” can be reused from a vector register
instead of memory or cache

Fortran Array-Syntax Patterns in Pagosa

Los Alamos National Laboratory 8

do i = 0, (mx+1)*(my+1)*(mz+1)
a(i,0,0) = b(i,0,0) * c(i,0,0)
d(i,0,0) = a(i,0,0) + e(i,0,0)

enddo

If the compiler can collapse the loops into a single loop-nest:

- reduces loop-overhead
- improves vector efficiency, esp with strong scaling
- CCE does extensive loop-collapse in Pagosa, Fujitsu less so

Role of Compilers on A64FX

Los Alamos National Laboratory

• Why CCE and Fujitsu compilers generate so much better code than ARM
compiler (1.9x faster for CCE, 1.7 times faster for Fujitsu)

• Both compilers are better at vectorization overall than ARM LLVM, and
• CCE:

• Significant fusion of array-syntax statements
• More Vectorization of loops/array-syntax
• Loop-collapse
• 512-bit fixed style of vector-code

• Fujitsu:
• Avoid branch prediction using predication for SVE ops
• Software pipeliner (not sure about this yet)
• Loop Fissioning (not sure about this yet)

• ARM compiler does:
• Limited fusion of array-syntax statements
• Much less vectorization
• no loop-collapse
• Vector-length-agnostic (VLA) vector-code

9

Example of CCE optimization for Array-Syntax

Los Alamos National Laboratory 10

Key: V – vectorized, f – loop-fusion, C – loop-collapse

52. fVC----<> Tmp1(:,:,:) = (Grad(:,:,:,1,1) + Grad(:,:,:,2,2) + Grad(:,:,:,3,3))
53.
54. f------<> dA(:,:,:) = (Grad(:,:,:,1,1) - Tmp1(:,:,:)) * dt
55. f------<> dB(:,:,:) = (Grad(:,:,:,2,2) - Tmp1(:,:,:)) * dt
56. f------<> dC(:,:,:) = (Grad(:,:,:,3,3) - Tmp1(:,:,:)) * dt
57. f------<> dD(:,:,:) = (.5 * (Grad(:,:,:,1,2) + Grad(:,:,:,2,1))) * dt
58. f------<> dE(:,:,:) = (.5 * (Grad(:,:,:,1,3) + Grad(:,:,:,3,1))) * dt
59. f------<> dF(:,:,:) = (.5 * (Grad(:,:,:,2,3) + Grad(:,:,:,3,2))) * dt
60.
61. f------<> W1(:,:,:) = (Grad(:,:,:,1,2) - Grad(:,:,:,2,1)) * dt2
62. f------<> W2(:,:,:) = (Grad(:,:,:,1,3) - Grad(:,:,:,3,1)) * dt2
63. f------<> W3(:,:,:) = (Grad(:,:,:,2,3) - Grad(:,:,:,3,2)) * dt2

Compare A64FX to other node types

Los Alamos National Laboratory

• AMD Rome with 2-sockets/node and 128-cores of AVX2
• Using 4 compilers: CCE, Intel, AOCC, and GNU

• Intel Xeon Cascade Lake with 2-sockets/node and 48-cores of
AVX512

• Using Intel and GNU compilers

• Intel Xeon Ice Lake with 2-sockets/node and 48-cores of AVX512
• Using Intel and GNU compilers

11

Could source changes help performance?

Los Alamos National Laboratory

• Version 1:
• Take selected array-syntax statements and recode as loops

• Kernels from routines high in profile
• Manual loop-fusion of recoded loops to get data reuse
• To make up for compiler optimization NOT doing it

• Version 2:
• Manually inline most expensive routines into the calling routine
• Manually fuse loops from these routines into single, more compute

intensive loops
• Replace vector temporaries with scalars

• Answer: Yes, such source changes can help for some compilers

12

Timing Results

Los Alamos National Laboratory 13

A64 – A64FX
CLX – Cascade Lake
ICE – Ice Lake
ROM – AMD Rome

Conclusions

Los Alamos National Laboratory

• Pagosa performance is dependent on the compiler ability to:
• Vectorize array-syntax well
• Loop-fusion of array-syntax statements
• Loop-collapse
• CPU Vendor compiler specific optimizations

• A node of Apollo 80 with A64FX socket performed:
• Almost 2x faster built with CCE or Fujitsu compared to ARM compiler
• Better than a node of Xeon Cascade Lake
• Slightly worse than a node of Xeon Ice Lake
• Worse than a node of AMD Rome probably because of core-count

disadvantage and Rome’s large L3 cache
• Making selected source changes can help compilers

14

Next Steps

Los Alamos National Laboratory

• More detailed investigations of Fujitsu compiler capabilities:
• Investigate use of loop fission for compute intensive loops
• Investigate performance impact of software pipeliner

• Investigate performance of an ALE application on A64FX

15

